<u>Controlar la calidad de un monitor y de un perfil</u> con un calibrador i1 Display Pro

Gustavo Sánchez Muñoz

(Enero de 2014)

Comprobación de la calidad del perfil y la pantalla

Una vez que hemos calibrado y caracterizado el monitor, creando su perfil correspondiente, il Profiler nos permite comprobar cómo de bueno es el perfil y si la pantalla alcanza con él un nivel suficiente de calidad. Mediante el calibrador il Profiler mide los valores de algunos parches de referencia, los compara con los valores emitidos usando el perfil y crea un informe de desviación colorimétrica (valores ΔE). Si esta desviación es superior a un valor determinado —que el usuario puede variar, haciéndolos más o menos estrictos—, el conjunto perfilpantalla no pasará la prueba.

En teoría, lo que estamos haciendo pretende ser una comprobación inversa, un viaje de ida y vuelta a los valores originales *(round trip)* de la calibración. Se puede hacer también con la calibración de un proyector y de una impresora si se dispone de los aparatos adecuados para cada caso.

Advertencia: Hay expertos, como por ejemplo <u>Andrew Rodney</u>, que cuestionan la validez de validar de esta forma, <u>afirmando</u>:

"el informe es un poco falso, más una experiencia para sentirse bien que otra cosa. Es útil si los errores son realmente elevados (...) Usar el mismo instrumento para validarse a si mismo es una tontería. Y en estos informes no hay colores suficientes, especialmente colores de los que son difíciles de clavar. La pregunta esencial es '¿Consigues una buena coincidencia entre lo impreso y la pantalla?' Eso es lo que cuenta"

Este tipo de comentarios no es irrelevante y yo, por lo menos, los usaría para tomarme con mucha filosofía los resultados de estas operaciones si vamos a hacer un trabajo crítico. Si lo que queremos es un cierto control de la situación, una especie de luz roja de "cuidado", probablemente son mejor que nada y todos somos personas mayores. Dicho lo cual...

El informe se puede guardar y asignar a un gráfico temporal de "Tendencia" con el que podremos saber cómo se va deteriorando o alterando nuestra pantalla y perfiles.

			1 PROFILER
Bastalla			
Perfilado			
Calidad			
Uniformidad			
Proyector			
Perfilado			
Calidad			
—)		Modo del usuario:	Bisico 🔘 Avanzado
impresora		T Langeler	
Selección del dispositivo:		Y Licencia.	
Impresora FIGB Selección del fluio de trabalo:			
Perfilado	DEMO		Transferir licencia
Perfilado CBO	DEMO		
Optimización	DEMO		Mejorar la licencia
			Registro
ColorChecker Proof	DEMO		
Análisis de datos	DEMO	▼ Ajustes de la aplicación:	Dispositivo de pantalla predefinido: 11Display -
Medir gráfico			
Medir gráfico de referencia			
Perfilado de enlace de dispositivo	DEMO		
Escáner		▶ Información de la aplicación:	r1.5.0 i Versión XRD: 2.3.2.16 i Comprobar si hay actualizaciones: ON
Perfilado básico	DEMO		
		Ayuda de la aplicación:	
O Cambiar a los flujos de trabajo gua	irdados		Vídeos de capacitación i 1Profiler en líneo
5 <u>-</u>			

Cómo se comprueba la calidad, paso a paso

Conectamos el calibrador y en la pantalla de inicio de il Profiler, pulsamos el botón "avanzado" de la pantalla de inicio. En la pantalla siguiente, pulsamos la opción "Calidad", en la esquina superior izquierda, en el apartado dedicado a "

Pantalla".

il Profiler pide que identifiquemos la pantalla y su "tecnología" —algo que ya hemos descrito más en detalle al describir cómo se calibra una pantalla con el il Display Pro—. El perfil usado es invariablemente el asignado por el sistema al monitor en ese momento. Su nombre aparece en la zona superior de la pantalla.

Para comprobar la calidad de los dispositivos, il Profiler nos deja cargar varios tipos de parches —muchos de ellos adecuados sólo para dispositivos de impresión—. Si se trata de un monitor, lo adecuado y predeterminado es elegir " Estándar" y cargar el "X-Rite ColorChecker Classic".

Activos	Mostrar medición de CC
Conjuntos de parches de referencia	Tem mac_basico_20130105_d5080cd
	▼ Instrumento de medición
	Inclar motion
	New Sak
	Flujo de trabajo de CC de pantallas
	Referencia Modición Informe de CC Tendencia Particular el o particu
Pantalia completa Ayuda Inicio	

Una vez elegidas las opciones de medición de CC (Control de Calidad), aparecerá el botón "Iniciar medición". Lo pulsamos y procedemos a la medición de la calidad.

Al terminar, veremos una pantalla en la que los cuadros se dividen en dos triángulos. El superior izquierdo es el color de referencia, el ideal, y el inferior derecho es el color obtenido, lo que produce la pantalla.

Cuando el valor resultante tiene una diferencia respecto al valor deseado superior al que se ha marcado como "Umbral ?E promedio", el cuadrado aparece recuadrado en amarillo". Cuando el valor resultante tiene una diferencia respecto al valor deseado superior al que se ha marcado como "Umbral Delta E máximo", el cuadrado aparece recuadrado en Rojo.

Los valores "Umbral ?E promedio" y "Umbral ?E máximo" se pueden elegir y variar con los controles disponibles en el apartado "tipo de ?E", que es siempre ΔΕ CIE 1976 — no se puede elegir otra fórmula para calcular la diferencia en la percepción del color como CIE2000, por ejemplo—.

Un monitor en condiciones mínimas para trabajos de diseño gráfico y fotografía *debería* obtener valores de Δ E promedio inferiores a 2 y de Δ E máximo no superiores a 3 o menores. Digo *debería* por los comentarios que he mencionado al principio cuestionando el realismo de esta prueba.

Result	tados de	e validac	ión									
v most	rar CIEL/	AB										💿 ΔΕ 💿 ΔΕ94 🔘 ΔΕ00
Nº	R	G	В	refL	ref a	refb	L	a	b	ΔE ₉₄		
0	255	255	255	100.0	0.0	0.0	100.0	0.0	0.0	0.00		
1	224	224	224	87.9	0.0	0.0	88.0	-0.5	0.1	0.50		
2	192	192	192	75.5	-0.0	0.0	75.5	-0.2	-0.2	0.28		
3	160	160	160	63.1	0.0	-0.0	63.1	0.1	-0.1	0.14		
4	128	128	128	50.7	0.0	-0.0	50.7	0.0	-0.0	0.01		
5	96	96	96	38.5	0.0	-0.0	38.3	-0.1	-0.0	0.13		
6	64	64	64	26.5	-0.0	0.0	26.4	-0.8	0.1	0.79		
7	32	32	32	15.2	0.2	-0.3	15.3	-0.3	-0.3	0.44		
8	0	0	0	3.8	1.4	-2.2	3.8	1.1	-2.3	0.31		
9	128	0	0	26.8	45.3	27.0	26.8	45.4	26.9	0.04		
10	255	0	0	57.9	82.6	57.1	57.8	82.6	57.1	0.03		
11	255	128	128	69.3	55.4	25.6	69.3	55.5	25.9	0.07		
12	0	128	0	42.6	-50.7	45.9	42.5	-50.7	45.8	0.05		
13	0	255	0	86.2	-92.4	87.2	86.2	-92.3	87.1	0.03		
14	128	255	128	89.1	-66.0	53.8	89.1	-66.3	53.9	0.07		
15	0	0	128	13.0	33.1	-58.5	13.0	33.3	-58.9	0.10		
16	0	0	255	31.1	66.0	-110.3	31.0	65.8	-109.9	0.09		
17	128	128	255	56.4	27.9	-68.0	56.3	27.9	-68.2	0.07		
18	0	128	128	44.4	-32.9	-9.0	44.4	-33.0	-8.6	0.14		
19	0	255	255	89.2	-59.7	-16.0	89.3	-59.7	-15.6	0.11		
20	128	0	128	30.1	52.6	-32.2	30.0	52.6	-32.0	0.06		
21	255	0	255	63.4	94.7	-57.4	63.3	94.4	-57.4	0.06		
22	128	128	0	49.0	-8.3	51.2	49.0	-8.6	51.1	0.10		
23	255	255	0	97.5	-16.0	95.3	97.5	-15.8	95.2	0.04		
Valida	ación: 7	2014-01	-11T19:	23:14			Perf	il: 1P5225	5 (Serial Nu	mber).icm		
					Color d	le simulac	ión espacia	al: < Ningr	uno >			
			Г	Destino	Actual	Tol	erancia				ΔE ₉₄	Tolerancia
😑 Pr	unto Blar	nco:		D50	Δa 0.4, Δb	-0.0 Δr	ab 1.5	🔵 Media	a:		0.15	1.0
c	lurva res	puesta to	onal:	L*				Escala	a de grises m	áx.:	0.79	1.5
L	uminancia	a							es cromáticos	s máx:	0.14	3.0
I B	anco:		80	0 cd/m²	80 cd/m	2 ±	: 10%	Desv.	Estandar:		0.18	
N	egro:		0.3	36 cd/m²	0.34 cd/m	n²						
Cr	ontraster	:		-	238 : 1			Est	tado:			
Cargar datos de validación) Guardar informe como OK							OK					

Además, antes de ponernos muy nerviosos y arrojar nuestro monitor por la ventana, podemos <u>descargarnos una demo</u> de, BasICColor 5, un programa similar a i1 Profiler —sólo para la calibración de monitores— que también puede validar los perfiles que crea.

Lo digo porque los valores Δ E que he obtenido calibrando los dos monitores que antes calibré con il Profiler han sido notablemente más reducidos —y eso con tres formas distintas de calcular Δ E, cosa que il Profiler no es capaz de hacer—.

Con ello no quiero decir que debas comprar BasICColor 5 —unos 120 euros más o menos, IVA incluido—, sino que calibrar un monitor en condiciones puede llevar algo más de intentos de lo que creemos y que hallarle el punto óptimo es más complejo de lo que parece. De hecho, ya en el segundo intento de calibración con i1 Profiler obtuve valores de error más bajos afinando los parámetros de calibración en el apartado "Avanzado".

Por eso, no hay que ponerse excesivamente nerviosos si 23 de los 24 parches de prueba reciben un correcto número promedio o si suspenden el valor máximo, si no es por mucho dentro de lo razonable. Las decisiones correspondientes es un asunto de cada uno y de sus necesidades de trabajo.

1Profiler					P	antalla de verificación
Resultados generales						
kesumen del informe			Fallado.			08/01/2014 09:18/01 pm
hofile			lg_basico_d50_80cmd_20130105.icm			
keferencia			ColorChecker			
Probar				Tolerancia	Medido	Estado
If promedio, todos los parches				3	3.54	Falla
E promedio de los inferiores 90%					3.37	-
E promedio de los superiores 10%				-	5.34	-
E máximo, todos los parches				7	5.56	Pasa
Parche		RGB	Objetivo	a' b'	1.4.14	Medido Dettal/751
		30.00	14.74 (u.h. 14.84		NT 110 NO	Constant (reg
	207.38	10.0 00.0	0.7 32 77		Mar 36.0 H.D	
	44.60	6.8 14.0	26.54 19.05 40.67		28.96 20.39 42.43	10
	14578	DOM INN	8.54 1.0 1.0		96.36 1.27 3.48	1.00
	16081	147.55 107.05	66.67 16.34 17.44		62.00 10.00 10.01	4:0
6	12.00	KUDN 162,62	4027 8.74 -40,42		30H 1128 HUB	4.30
7	40.13	1404 701	64.87 -36.81 35.81		81,04 <07,02 20,04	10*
4	199.01	198.19 198.28	0.00 -0.10 0.00		76.21 1.02 0.03	2.9
	外段	19877 19440	804 4.9 4180		4.67 - 4.67 - 41.88	3.10
10	187,89	42M R.M	52.15 (7.29 11.87		48.44 40.05 17.91	154
	105,40	er.30 80/10	41,17 86,00 26,02		36.01 52.08 27.03	2.9
9	187,00	107.0 10.0	61.09 0.00 -0.17		62.00 0.00 -0.10	137
9	\$1.37	08.07 08.04	41.8 -12.71 21.77		36.07 (10.70 20.04	1.04
	00.04	8.74 10.06	88 89 48		26.04 19.08 -20.19	10
	129.29	10.4 21.1	600° 130 7759		NB 4N 110	14
	116,20	10.00 110.00	1/2 -00 009		107 KM 40	104
	107.01	1400 11400 11400	1124 -0127 Mill		MAL (200 123)	10
	126.26	7648 14248	8138 4844 4415		41.00 0.40 -0.00	144
			1.11 1.12 1.101			
	81.91	40.04 45.01	348 498 430		1 1 17 1 28 1 10	1 10
21	8.81 19732	40.04 40.01 100.40 107.12	38.88 -4.88 -4.20 (84.90 -38.17 - 6.72		118 128 418 81.6 -318 137	2.10
27	41.91 107.22 218.54	80.04 80.01 198.60 197.12 198.58 27.01	14.68 4.68 4.20 64.80 431.7 0.72 71.22 14.54 61.60		0.47 0.28 -0.00 0.46 -0.48 0.97 0.48 2.75 00.99	109 2.14 2.16
2000 E	81.94 107.32 218.54 0.00	80.04 80.01 180.00 197.12 190.00 37.00 120.07 162.40	368 4.81 4.23 68.00 -81.97 -6.72 71.22 16.56 61.02 46.80 -61.22 -62.21 46.80 -62.22 -67.71		11.07 0.28 400 07.4 -04.08 1.07 40.00 21.75 40.08 46.00 42.02 47.71	2.00 2.14 2.18 0.00

Para no quedarnos en la superficie, es recomendable leer un informe más detallado en forma de página HTML que se obtiene pulsando la opción "Guardar informe...". Allí podremos ver una pantalla como la imagen superior, con una explicación en forma de tabla de los resultados.

Podemos poner los resultados en un gráfico temporal pulsando "Agregar a tendencia". Después de varias calibraciones, cuando tengamos más de un informe, veremos la tendencia de degradación del sistema formado por el perfil y el monitor. Cuanto más rápidamente y en mayor cantidad varíe a peor —por mucho que volvamos a perfilar—, más tendremos que ir ahorrando para comprar un nuevo monitor.

Comprobar la uniformidad de la pantalla

Una segunda opción de control de calidad de nuestra pantalla es la que nos permite comprobar si su luminancia y punto blanco son razonablemente uniformes y no varían mucho por zonas.

El programa il Profiler divide la pantalla en nueve zonas y emite una señal luminosa que se mide con el colorímetro. A continuación nos informa con una tabla y dos gráficos de los valores emitidos. Si las medidas quedan dentro de los límites admitidos, el monitor *pasa* la prueba.

Cómo se comprueba la uniformidad, paso a paso

En la pantalla de inicio de il Profiler, pulsamos el botón "avanzado" de la pantalla de inicio. En la pantalla siguiente, pulsamos la opción "Uniformidad", en la esquina superior izquierda, en el apartado dedicado a "Pantalla".

Comprobar la uniformidad de mi pantalla	Luminancia: 68 cd/m2 Punto blanco: 5220 K	Luminancia: 65 od/m2 Punto blanco: 5203 K
Luminancia: 67 cd/m2 Punto blanco: 5148 K	Luminancia: 72 cd/m2 Punto blanco: 5191 K	Luminancia: 64 cd/m2 Punto blanco: 5171 K
Luminancia: 61 cd/m2 Punto blanco: 5064 K		

Inmediatamente aparecerá una cuadrícula y unas marcas sucesivas sobre las que tendremos que colocar con precisión el colorímetro. Podemos sujetar el dispositivo con la mano —sin hacer presión excesiva para no dañar la pantalla ya que el proceso de medición dura un leve instante, apenas un segundo.

Una vez terminadas las mediciones, aparecen los resultados mencionados. Podemos variar los valores límites de aprobado/fallo para los parámetros de

Los gráficos tridimensionales son bastante explicativos. A diferencia de la medición de parches de color, los datos obtenidos no se pueden agregar al de tendencia.

Conclusión

Estas utilidades de control de calidad del programa il Profiler, por muchas pegas que se le puedan poner y mejoras que se puedan incluir, son dos herramientas extremadamente útiles que nos pueden ayudar a controlar la calidad del perfilado y el estado físico de nuestros monitores.